

# HDD/ICM 14J

# Electrical data Data sheet

| Value                              | unit   | Pa winding | Sa winding |
|------------------------------------|--------|------------|------------|
| Number of poles                    |        | 20         | 20         |
| Number of pole pairs               |        | 10         | 10         |
| Inductance/Phase                   | mH     | 4.4        | 0.5        |
| Resistance/Phase                   | Ohm    | 0.77       | 0.09       |
| Resistance/Phase-Phase             | Ohm    | 1.5        | 0.17       |
| Back EMF/Phase-Phase RMS           | Vs/rad | 0.90       | 0.30       |
| Back EMF @ 1000 rpm                | V      | 94         | 31         |
| Torque constant (RMS)              | Nm/A   | 1.56       | 0.52       |
| Max rail voltage                   | V      | 750        | 750        |
| Recommended peak current           | A      | 15         | 45         |
| Torque at recommended peak current | Nm     | 22.5       | 22.5       |
|                                    |        |            |            |

For higher torques, see next page. The torque constant is defined as the back EMF; friction losses are ignored. Data are based on a small sample and not definitive.

## Mechanical data (resolver feedback)

| Value | unit              | HDD14J   |       | ICM14J         |
|-------|-------------------|----------|-------|----------------|
|       |                   | no brake | brake | no brake brake |
| J     | kgcm <sup>2</sup> | 13.3     | 13.7  |                |
| Mass  | ko                | 60       | 6.5   |                |

## **Holding brake**

| Torque  | Nm                | 9   |  |
|---------|-------------------|-----|--|
| J       | kgcm <sup>2</sup> | 0.4 |  |
| Voltage | VDC               | 24  |  |

## Insulation class

The insulation system complies with the requirements of EEC LV Directive 73/23/EEC and 93/68/EEC. Test report E9911111E01.

### **Protection class**

HDD motors comply with the requirements for IP-65. IP-67 is available on request.

#### **Thermistor**

Overheat protection consists of triple PTC termistors (one on each phase).

| R @ 25 C  | 100 to 350 Ohm |
|-----------|----------------|
| R @ 145 C | < 1650 Ohm     |
| R @ 155C  | >4 kOhm        |

#### Motor name structure

| iotoi iia | iiie Sii u  | Cluie         |         |          | 5             |       |           |         |
|-----------|-------------|---------------|---------|----------|---------------|-------|-----------|---------|
| Туре      | Flange size | Stator length | Winding | Feedback | Power connect | Brake | Shaft key | Options |
|           |             |               |         |          |               |       |           |         |

HDD 14 J - Pa - A - A - A - A - AAA

**Type** HDD = shaft motor, ICM = internal coupling motor.

**Flange size** Approximate in cm. 14 = 140 mm.

**Stator length** J(shortest), N (longest).

Winding Pa suitable for 3000 rpm at rail voltage 560V Ma suitable for 3000 rpm at rail voltage 320V

**Feedback** See the feedback list on www.hdd.se/Available feedback

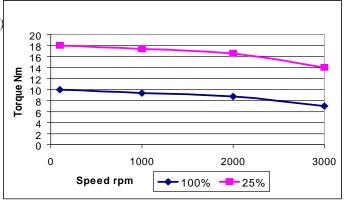
**Power connector** Many different pinouts available; see www.hdd.se/Connector pin-outs

**Brake** A = no brake, D = holding brake. Data see above.

**Shaft key** A = shaft with key, B = shaft without key.

**Options** AAA = standard. For other options please contact HDD.

#### HDD Servo motors AR


Stallarholmsvägen 40, S-12459 Bandhagen, Stockholm

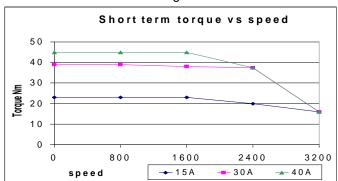
sales@hdd.se www.hdd.se Tel +46 8 868780 Fax +46 8 995153 Nm00144K 14J Jun 2014 1/2 **Torque** in Nm at 90°C temp rise (median temp rise, i.e. average between min and max temp for 25% cycle)

| Speed   | Duty cycle |      |  |
|---------|------------|------|--|
|         | 100%       | 25%  |  |
| 100rpm  | 10.0       | 18.0 |  |
| 1000rpm | 9.3        | 17.3 |  |
| 2000rpm | 8.7        | 16.5 |  |
| 3000rpm | 7.0        | 14.0 |  |

**Current** at 90°C temp rise, in Ampere rms

| <b>Duty cycle</b> | 100% | 25%  | 100% | 25% |
|-------------------|------|------|------|-----|
| Winding           | Pa   | Pa   | Sa   | Sa  |
| 100rpm            | 7.0  | 13.0 | 21   | 39  |
| 1000rpm           | 6.6  | 12.7 | 20   | 38  |
| 2000rpm           | 6.0  | 12.3 | 18   | 37  |
| 3000rpm           | 5.3  | 10.6 | 16   | 32  |



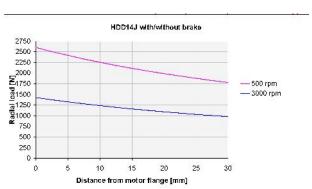

Data were measured on an HDD14J-Pa series motor mounted on a vertical 450 x 375 x 30 mm steel plate in free air, with a winding temperature rise of 90°C and driven by a commercially available inverter.

## Important note on peak torque and currents

The HDD/ICM motors are capable of high peak torques. At very high peak torques the permitted pulse time is very limited as a high current in a very small motor causes rapid temperature rise in the copper winding. The protection thermistor will not react fast enough to protect the winding during high pulse loads. A 40A rms current to a HDD14J-Pa will give some 45 Nm, but the copper winding temperature will increase with some 40°C **per second.** This is not a problem for short pulses of < 0.5 seconds as long as the rms value of the current is kept below some 7 A. The short term torque graph below represents acceleration ramps at various commanded currents; the actual currents may be lower if the driver has not been able to compensate for the high acceleration.

## Torque at various commanded currents

HDD 14J-Pa at 560V rail voltage




### Maximum load on shaft at life expectancy 20,000 h (shaft motors only)

Maximal axial load (push):  $1000\,\mathrm{N}$  at  $500\,\mathrm{rpm}$ ,  $300\,\mathrm{at}$   $3000\,\mathrm{rpm}$ .

Maximal axial load (pull): 100 N at all speeds.

Maximal radial load is given by the curves below.

