

HDD09E

Data sheet

Electrical data

Value	unit	Pa winding	Ma winding
Number of poles		20	20
Number of pole pairs		10	10
Inductance/Phase	mH	19	3.4
Resistance/Phase	Ohm	15	2.5
Resistance/Phase-Phase	Ohm	30	5.0
Back EMF/Phase-Phase RMS	Vs/rad	0.71	0.30
Back EMF @ 1000 rpm	V	74	31
Torque constant (RMS)	Nm/A	1.22	0.52
Max rail voltage	V	750	750
Recommended peak current	A	3	7
Torque at recommended peak current	Nm	3.1	3.1

For higher torques, see next page. The torque constant is defined as the back EMF; friction losses are ignored. Back EMF standard deviation is about 2%; the range -6% to +6% should thus include 99.7% of the motors. Data are based on a sample of over 2000 motors.

 \mathbf{or}

Mechanical data (resolver feedback)

Value	unit	HDD09JE		
		no brake	brake	
J	kgcm ²	1.3	1.7	
Mass	kσ	1.8	24	

Holding brake

Torque	Nm	9
J	kgcm ²	0.4
Voltage	V DC	24
Power	W	12

Insulation class

The insulation system complies with the requirements of EEC LV Directive 73/23/EEC and 93/68/EEC. Test report E9911111E01.

Protection class

HDD motors comply with the requirements for IP-65. IP-67 is available on request.

Thermistor

Overheat protection consists of triple PTC termistors (one on each phase).

R @ 25 C	100 to 350 Ohm
R @ 145 C	< 1650 Ohm
R @ 155 C	>4 kOhm

Motor name structure

Type	Flange size	Stator length	Winding	Feedback	Power connect	Brake	Shaft keyway	Options
HDD	09	E	- Pa	- A	- A	- A	- A	- AAA

Type HDD = shaft motor, ICM = internal coupling motor.

Flange size Approximate in cm. 09 = 92 mm. Stator length E (shortest), J, N, Q, S (longest).

Winding Pa suitable for 3000 rpm at rail voltage 560V Ma suitable for 3000 rpm at rail voltage 320V

Feedback See the feedback list on www.hdd.se

Power connector Many different pinouts available; see www.hdd.se **Brake** A = no brake, D = holding brake. Data see above.

Shaft key A = shaft with keyway (standard), B = shaft without keyway.Options AAA = standard. For other options please contact HDD.

HDD Serve meters All

Stallarholmsvägen 40, S-12459 Bandhagen, Stockholm

sales@hdd.se www.hdd.se Tel +46 8 868780 Fax +46 8 995153 **Torque** at 90°C temp rise, in Nm

•	Duty cyc	ele
Speed	100%	25%
worst angle locked rotor	1.0	
100rpm	1.3	
1000rpm	1.3	2.3
2000rpm	1.3	2.3
3000rpm	1.2	2.3

Current at 90°C temp rise, in Ampere rms

Duty cycle	1	.00%	25%		
Winding	Pa	Ma	Pa	Ma	
locked rotor	0.9	2.2			
100rpm	1.2	2.8	2.25	5.3	
1000rpm	1.2	2.8	2.25	5.3	
3000rpm	1.1	2.7	2.25	5.3	

Data were measured on an HDD 09E-Pa series motor mounted on a vertical 260 x 200 x 12 mm aluminum plate in free air, with a winding temperature rise of 90°C and driven by a commercially available inverter. Data for Ma windings were calculated.

Important note on peak torque and currents

The HDD/ICM motors are capable of high peak torques. At very high peak torques the permitted pulse time is very limited as a high current in a very small motor causes rapid temperature rise in the copper winding. The protection thermistor will not react fast enough to protect the winding during high pulse loads. A $4.2 \, \text{A}$ rms current to a HDD09E-Pa will give some $3.8 \, \text{Nm}$, but the copper winding temperature will increase with some 47°C **per second.** This is not a problem for short pulses of < 0.5 seconds as long as the rms value of the current is kept below some $1.3 \, \text{A}$. The short term torque graph below represents acceleration ramps at various commanded currents; the actual currents are lower as the driver has not been able to compensate for the high acceleration.

Torque at various commanded currents

HDD 09E-Pa at 560V rail voltage

kT derating factor

Low speed, HDD09E-Pa

Maximum load on shaft at life expectancy 20,000 h (shaft motors only)

Maximal axial load (push): 350 N at 500 rpm, 100 N at 3000 rpm. Maximal axial load (pull): 50 N at all speeds. Maximal radial load at zero axial load is given by the curves below. For special cases please contact HDD for calculations.

